


Preface
The rapid development of artificial intelligence industry drives the explosive

growth of various AI applications. As the critical infrastructure bridging end users and

computing resources, metropolitan area networks (MANs) are now facing

transformative requirements in network architecture, functional capabilities, and

service paradigms.

In 2024, China Telecom pioneered the industry-first ‘computing service-oriented

metropolitan area network’ concept and released the ‘computing service-oriented

metropolitan area network White paper’, generating significant industry-wide

attention and discourse. As a continuation, this white paper provides in-depth analysis

of metropolitan area network evolution in the AI era. This white paper first analyzes

the development landscape of artificial intelligence from the perspectives of industry

advancement and macro policies. Subsequently, it conducts an in-depth analysis of AI

application requirements to define the essential network capabilities that metropolitan

area networks must possess. This white paper then examines the design objectives,

elaborating on the overall architecture and key technologies of metropolitan area

networks for the AI era. Finally, it provides technical solutions tailored for typical

scenarios.
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Chapter I

Development Trends of
Artificial Intelligence
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1.1 AI Industry enters a phase of accelerated growth

As the core driving force leading the Fourth Industrial Revolution, the artificial

intelligence (AI) industry is experiencing unprecedented rapid development,

demonstrating enormous market potential. According to Grand View Research, the

global AI market size reached 196.63 billion in 2023 and is projected to increase to

1,811.75 billion by 2030, with a compound annual growth rate (CAGR) of 37.3%

from 2024 to 2030. In China, research reports indicate that the scale of the AI industry

is expected to expand from 398.5 billion yuan in 2025 to 1,729.5 billion yuan in 2035,

with an estimated CAGR of 15.6%. Artificial intelligence has undoubtedly become a

powerful engine for global economic growth.

Figure 1-1: Global artificial intelligent market

The global AI industry demonstrates a trend for development of ‘dual-track

advancement and diversified flourishing’. On the one hand, global technology giants

continue to intensify their AI investments: companies like Google and Microsoft are

deepening research and development (R&D) in core AI technologies; Amazon and

Apple persist in innovating intelligent cloud services and end-device smart

applications, while China's major tech firms such as Baidu, Alibaba, Tencent, and

Huawei (BATH) are also making rapid progress in key areas such as AI chip

development, large AI model construction, computer vision, and embodied
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intelligence. On the other hand, the explosive breakthroughs in generative AI

technology have spurred a wave of innovative enterprises worldwide: OpenAI

pioneered the commercialization of generative AI with ChatGPT; Anthropic and

Cohere specialize in vertical-oriented development; and in 2025, China's DeepSeek

significantly accelerated the commercial application of large AI models in inference

scenarios. Numerous emerging AI supply chain companies have become investment

hotspots, collaborating with industry leaders to form a synergistic innovation

ecosystem. This dynamic development pattern that features competition and

symbiosis among diverse players not only accelerates the commercial deployment of

large language models in finance, healthcare, and manufacturing, but also provides

robust momentum for the high-quality development of the digital economy.

Benefiting from the rapid development of AI industry, AI technologies are

becoming powerful engines for urban development, injecting unprecedented vitality

into various sectors of cities: In transportation field, leveraging the precise predictive

capabilities of large AI models optimizes traffic flow and enhances travel efficiency.

In healthcare industry, AI-assisted diagnostic technologies enable the rapid and

accurate analysis of medical images, helping doctors to formulate treatment plans. In

education, customized teaching content is provided based on students' learning

progress and characteristics, stimulating their interest and potential. The financial

sector utilizes large AI models for risk assessment and investment decision-making,

improving the precision and security of financial services. Furthermore, numerous

fields such as intelligent manufacturing, intelligent government services, and

environmental monitoring have become more efficient, intelligent, and sustainable

through the empowerment of AI. The application of AI technologies provides

residents with more convenient, comfortable and secure living experiences, leading

cities to an intelligent and digital future.
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1.2 AI is focal point of global industrial policies

AI has become one of the core driving forces for urban and social development,

forming a global consensus：

 The United States launched the ‘White House Smart Cities Initiative’ in 2015,

leveraging AI, big data, and the Internet of Things (IoT) technologies to help

cities address challenges such as traffic congestion, energy management, and

public safety. By 2025, it would further strengthen AI infrastructure through the

‘Stargate Program’.

 The European Union proposed the ‘European Data Union Strategy’ in 2025 to

promote AI and big data applications in healthcare, education, and urban

governance, supported by the ‘Digital Europe Programme’ to implement AI in

critical social and livelihood sectors.

 Japan introduced the ‘Super City’ vision, integrating AI and IoT to create

data-driven ‘smart cities’.

 Singapore implemented its 'National AI Strategy 2.0', which combines talent

attraction, industrial applications, R&D innovation, and infrastructure to build an

AI ecosystem that improves public services and industrial competitiveness.

 The Chinese government also prioritizes AI-driven urban development. In 2024,

China’s National Data Administration issued guidelines to deepen smart city

initiatives, encouraging AI-powered solutions, such as intelligent analysis,

scheduling, regulation and decision making, to comprehensively empower urban

digital transformation.

Networks have become critical infrastructure supporting global AI industry

development and are receiving high priority from nations worldwide：

 In China, ‘empowering computing through networks’ has been established as a

fundamental principle for building smart cities. In October 2023, China's Ministry

of Industry and Information Technology (MIIT) introduced the High-Quality

Development Action Plan for Computing Infrastructure, which aims to create a

group of computing power network city benchmarks in key regions.
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 In June 2023, the Singapore government launched its Digital Connectivity

Blueprint, proposing the construction of seamless end-to-end 10Gbps domestic

connectivity within five years to ensure Singapore's digital infrastructure remains

world-class and sets the direction for its digital future.

 In April 2024, Saudi Arabia's Ministry of Communications released the Saudi

Arabia's 10Gbps Society White Paper, becoming the first globally to propose an

end-to-end high-speed, high-quality Net5.5G network architecture to support the

country's intelligent transformation.

 In 2025, the European Commission Digital Europe Programme (DIGITAL)

2025-2027 also emphasized the need to enhance network resilience in various AI

scenarios.

With the widespread adoption of large AI models and growing demand for

applications such as distributed inference, the role of networks in AI development is

becoming increasingly prominent. Building a second "information superhighway"

dedicated to AI has emerged as a global priority.

1.3 AI technology is developing explosively

1.3.1 AI technology is advancing comprehensively

The development of AI technology demonstrates notable trends of diversified

collaboration, high-efficiency evolution, and multi-ecosystem integration：

 At the hardware level, the significant increase in inference scenarios has driven

rapid advancements in dedicated AI chips such as TPUs and LPUs, while

general-purpose GPUs, combined with cutting-edge technologies like chiplet, 3D

stacking, and quantum computing, provide enhanced capabilities for

ultra-large-scale AI model training.

 In storage technology, protocols such as HBM3 and CXL have achieved leaps in

memory bandwidth and capacity, while architectures such as storage-compute

disaggregation meet the demand for building private knowledge bases based on

large AI models.
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 High-speed interconnect technologies such as UEC, NVLink, UCIe and Falcon

break down data transmission barriers, enabling efficient collaboration between

distributed computing and heterogeneous architectures.

 On the software ecosystem, open-source frameworks such as PyTorch and

TensorFlow are deeply integrating with automated toolchains, combined with

cloud-edge-device unified deployment, to achieve end-to-end optimization from

training to inference.

 In addition, green computing technologies, including liquid cooling and dynamic

power management, contribute to the sustainable development of AI.

1.3.2 Large AI model technology enters rapid development

phase

Large AI models have become one of the most widely applied key AI

technologies today. From the launch of ChatGPT in 2022 to the rise of DeepSeek in

2025, the field of large AI models has experienced explosive growth. The

development of large models exhibits multi-dimensional trends: on one hand, model

scale continues to expand with increasing parameter counts, enabling the capture of

more complex patterns and relationships to enhance performance across various tasks;

on the other hand, multi-modal fusion has become an important development

direction, as large models combine text, image, speech and other multi-modal data to

achieve more comprehensive understanding and generation of information, expanding

their application scenarios. Additionally, greater attention is being paid to model

safety, reliability and interpretability, with researchers committed to developing more

robust model architectures and training methods to ensure stable operation and

trustworthy application of large AI models in complex environments. These trends

collectively drive the continuous advancement of large AI model technology, laying a

solid foundation for the widespread application of AI. Currently, large AI models are

evolving in the following technical directions:

Direction 1: As the parameters and training data scale of large AI models continue
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to increase, the demand for computing power is also growing rapidly. Single 1K+

GPUs or 10K+ GPUs AI Data Centers (AIDC) can hardly meet the requirements of

ultra-large-scale training. Taking Llama 3.1 released in 2024 as an example, its largest

model has 405B parameters and requires approximately 15 trillion Tokens for

pre-training, with the entire training process demanding 39.3 million GPU/hours

(H100) of computing power. Therefore, adopting distributed training methods and

utilizing high-performance networks to enhance the collaborative training

efficiency across multiple AIDCs has become a necessity for AI development.

Currently, multiple operators have completed the commercial deployment of

distributed training, achieving the distributed training for 10K+ GPUs, 100B

parameters large AI models across AIDCs over distances 100+ kilometers. Among

them, China Telecom and Huawei jointly deployed the distributed training service

supporting 120KM wide-area RDMA lossless transmission, with training efficiency

reaching over 95%.

Direction 2: Software engineering optimization has become the key pathway

to break through AI hardware bottlenecks, driving large AI models toward

cost-effective development, and accelerating the adoption of AI across industries.

The open-source DeepSeek-V3 in 2025 completed pre-training in just two months

using only 2,048 GPUs through algorithmic optimization, while the DeepSeek-R1

model further compressed the training cycle to 2-3 weeks. This ‘low-cost &

open-source’ solution significantly lowered the technical threshold for large AI

models, directly leading to two notable changes: First, the relatively low usage costs

triggered explosive growth in large AI model-based applications, resulting in surging

AI traffic within cities that requires network to ensure efficient AI traffic steer;

Second, through full-stack software engineering optimization spanning ‘algorithm &

hardware & system’, AI inference latency was reduced by over 60%, driving

exponential growth in AI inference demand.

Direction 3: The intelligent interaction of multi-edge agents reflects AI

technology's transformation from centralized to distributed systems and from
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single intelligence to collective intelligence, driving breakthroughs in real-time

performance, autonomy, and collaboration of AI. Large AI models can achieve

lightweight deployment through techniques like model distillation, making them

compatible with resource-constrained scenarios such as consumer-grade GPUs,

mobile devices, and IoT equipment, thereby promoting the development of

edge-based small intelligent devices. At the software level, the widespread adoption

of Multi-Agent technology enables multiple terminals to collaboratively complete

complex tasks, further advancing large-scale interactive applications of edge agents.

Google's introduction of the A2A and MCP protocols for agent interaction in 2025

signals AI's impending transition from the ‘cloud computing’ architecture of B2B,

B2C, and C2C to the ‘granular computing’ architecture of A2A, M2M, and X2X, with

the frequent interactions between intelligent computing particles place higher

demands on the reliability, and bandwidth capacity of network.

Direction 4: In September 2024, OpenAI launched the o1 model with

Chain-of-Thought (CoT) mechanism, which achieves higher accuracy by extending

thinking time during inference, marking a paradigm shift from pursuing response

speed to emphasizing deep reasoning. This transformation has driven the shift of

computing power demand from pre-training to inference, breaking through the

limitations of Scaling Law: while pre-training relies on 10K+ GPUs Scaling-up

clusters, inference can be implemented through Scaling-out architectures

composed of a small number of GPUs, promoting the evolution of AI

infrastructure toward distributed and flexibly scheduled systems. Additionally,

the significantly increased deployment demands on AI inference have raised

requirements for large-scale inference performance improvements. Network-based

distributed inference has become a key direction for future urban AI applications,

necessitating networks to support distributed AI inference deployment. In response,

NVIDIA introduced the Dynamo framework, adopting a PD-separated architecture to

optimize resource scheduling and computing efficiency in large-scale AI inference.
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1.4 Challenges to MAN from large-scale AI

commercialization

Building a comprehensive AI urban ecosystem has become the core pathway for

upgrading urban systems to advanced intelligence. In this process, the concept of

‘City as a Computer’ has gradually gained global consensus: by deeply integrating

computing power, storage, and terminals through metropolitan area networks (MANs),

cities are transformed into distributed ultra-large-scale computing systems, enabling

citywide intelligent management through millisecond-level data flow and real-time

decision-making. Existing broadband networks, mobile networks, dedicated

government and enterprise networks, and cloud networks within cities connected

various users. However, traditional MANs struggle to meet the requirements for

carrying urban AI services, whether in terms of network architecture or core

technologies.

1.4.1 Challenges in data circulation

The training of large AI models and the construction of knowledge bases

typically require data volumes at the TB/PB scale, which imposes higher throughput

requirements on data transmission networks. Simultaneously, the computing traffic of

large models exhibits significant elastic characteristics, demanding extremely high

network reliability. Substandard and non-deterministic networks may result in

insufficient data transmission bandwidth, excessive latency, or frequent packet loss,

thereby compromising the availability of computing resources. Furthermore, version

iterations of large models and knowledge base upgrades in AI systems also depend on

stable network support. Poor network quality can constrain the implementation of

these functions, ultimately reducing the overall operational efficiency of AI

infrastructure.

The rapid development of large-scale inference applications and A2A computing

paradigms has introduced new challenges to urban AI data circulation: on one hand,
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MANs need to meet the efficient data communication and interaction requirements

between distributed inference nodes; on the other hand, the A2A mode has led to

exponential growth in high-frequency interaction traffic across intelligent agents,

which not only significantly increases the bandwidth requirements of edge networks

but also requires MANs to ensure the reliability of information interaction between

intelligent agents. Therefore, to realize the vision of ‘City as a Computer’, it is urgent

to build a new ultra-interconnected network different from traditional MANs to meet

the transmission requirements of AI computing data flows and enable MANs to

effectively support efficient computational data circulation.

1.4.2 Challenges in O&M

When MANs carry AI services, network management and maintenance (O&M)

face greater challenges. From service model perspective, AI has transformed network

traffic patterns: large AI model training can cause sudden traffic surges, while

frequent interactions between intelligent agents also generate bursty communication,

requiring networks to possess predictive planning and maintenance capabilities. AI

services also demand higher network reliability, even minor faults during model

training may lead to complete task resets. When large-scale inference services replace

manual services in cities, networks must ensure service experience.

Consequently, traditional management models that rely on manual intervention

and route convergence to ensure basic network availability can no longer meet the

performance demands of AI services. AI services require higher fault self-healing

rates and lower latency in network optimization decisions, pushing network

operations toward high autonomy to fulfill needs like predictive maintenance, service

awareness, and elastic optimization. The question of how to equip networks with

highly intelligent management and operational capabilities, namely automating the

adjustment of network resources and configurations based on the intentions and states

of computing services, has become a key focus for AI-oriented MANs.
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1.4.3 Challenges in security and trustworthiness

With the rapid adoption of large models, vast amounts of urban data are being

utilized for analysis, computation, and processing. Data from enterprises, households,

and individuals constitute private domain traffic, posing significant security risks: For

households and individuals, private domain traffic involves sensitive data such as

personal information and consumption behaviors, where leaks could lead to privacy

violations; for enterprises, private domain traffic encompasses R&D data, production

data, and operational data, where breaches could undermine competitiveness or even

trigger legal disputes. Since data transmission faces potential threats such as theft,

tampering, and loss, MANs must have robust data protection capabilities to ensure

data confidentiality, integrity, and availability.

Traditional AAA (Authentication, Authorization and Accounting) systems and

data encryption technologies based on traffic flows struggle to meet the security and

trust requirements of AI scenarios. However, emerging technologies like blockchain

and quantum encryption offer innovative solutions for trustworthy data circulation:

blockchain provides immutable, end-to-end traceable trust mechanisms for AI data

flows through distributed ledgers and smart contracts; quantum encryption leverages

breakthroughs like quantum key distribution to fundamentally enhance

anti-eavesdropping capabilities for data transmission. MANs must integrate these

innovative mechanisms to establish a trusted foundation for large-scale urban AI

deployment, providing critical infrastructure support for the widespread

implementation of metropolitan AI services.
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Chapter II

AI-Driven Requirements
for MAN
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2.1 AI applications annovation aontinues to accelerate

In early 2025, DeepSeek spearheaded a transformative wave in generative AI,

driven by its exceptional performance and industry-leading cost efficiency in LLM

training and inference, accelerating the commercialization of AI technologies. Today,

AI applications have entered the stage of scaled deployment, serving diverse scenarios

across home(toH), consumer (toC), and business (toB), with penetration into multiple

vertical industries including media, legal services, education, and manufacturing.

2.1.1 AItoH scenarios

AI significantly enhances the professionalism, interactivity, and personalization

of home services, enriching home scenarios. Currently, the industry is gradually

reaching a consensus on building an integrated smart home ecosystem that combines

connectivity, computing power, and intelligence. Through cloud-network-edge-device

collaboration, providing broadband users with an smart cloud services, supporting

various AItoH scenarios including smart home and home assistants:

 Smart home: Smart TV, smart refrigerators and other smart home products,

utilizing AI technologies like voice recognition and computer vision, now support

intelligent capabilities including natural language interaction, user habit learning

and contextual adaptation. These smart home products can dynamically adjust

lighting, temperature and humidity based on user preferences, while employing

facial recognition and behavior analysis technologies to enhance home security.

 Home assistants: Smart home assistant products, including smart speakers and

domestic robots, employ natural language processing and other AI technologies

to enable harmonious human-machine dialogue. These products achieve precise

intent understanding to execute tasks including schedule reminders and

information retrieval, while enabling contextualized services such as appliance

control and security monitoring through seamless IoT interoperability.

https://arxiv.org/abs/2207.00782
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2.1.2 AItoC scenarios

AI revolutionizes the interactions between consumer and service, driving

enhanced user experiences and fostering market innovation. The AI innovation

landscape is witnessing rapid proliferation of various vertical applications. Major

industry players are actively deploying AItoC solutions across smart terminals,

personalized services, and digital lifestyle domains, leveraging metropolitan AI

services to enhance user experience and retention. The current AItoC applications

primarily encompass the following categories:

 Productivity Enhancement: AI applications such as intelligent search, automated

summarization, content generation, and code assistance have significantly

improved efficiency for both individuals and organizations. These applications

streamline complex workflows, enabling users to focus on higher-value strategic

initiatives while fostering innovation and competitive advantage.

 Creative Generation: AI applications including design automation, image

generation, video synthesis, and music composition are revolutionizing the

content creation industry. These applications augment creative ideas for content

creators.

 Entertainment: AI applications such as AI cameras and virtual companions are

transforming user experience through novel interaction paradigms and enhanced

engagement. These applications leverage user profiling to deliver personalized

entertainment services, elevating the enjoyment of digital experiences.

2.1.3 AItoB scenarios

AI demonstrates formidable capabilities in data analytics and decision support,

enabling enterprises to achieve significant operational efficiency improvements and

substantial cost reductions. Furthermore, AI exhibits exceptional capabilities in data

processing and content generation, enabling enterprises to access novel business

opportunities. The technological convergence of AI, 5G, and edge computing is

accelerating industrial intelligent transformation, establishing a closed-loop value
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system of ‘high-speed connectivity+real-time computing+intelligent decision-making’

that is reshaping entire processes from production to maintenance:

 Accelerating Product Development: During the requirements analysis phase, AI

leverages natural language processing and sentiment analysis to rapidly mine

massive user feedback and market data, enabling precise identification of latent

needs and pain points. In the conceptual design phase, AI automatically produces

hundreds of viable solutions based on historical data and design specifications for

engineers to evaluate, significantly compressing design cycles. For engineering

validation, physics-informed AI simulation systems accurately predict product

performance parameters, substantially reducing verification costs.

 Enhancing Operational Efficiency: AI empower enterprises to achieve intelligent

and high-efficiency operations through automated process enhancement, optimal

resource allocation, and strengthened supply chain management. For instance,

AI-driven monitoring systems conduct real-time surveillance of supply chain

nodes, predicting potential disruptions and demand fluctuations to dynamically

optimize inventory levels and logistics planning. Futhermore, AI-driven

maintenance systems analyze sensor data and historical maintenance records to

accurately forecast failure patterns, enabling proactive maintenance scheduling

that significantly reduces unplanned downtime.

2.2 AI applications exhibit diverse deployment models

The deployment of AI applications requires meeting differentiated response

requirements while considering critical aspects including data security, elastic

resource scaling, and system maintenance. Through the coordination of urban AI Data

Center (AIDC), Metropolitan Area Networks (MANs), and various deployment

models, a hierarchical and collaborative city AI enablement system can be constructed.

Common deployment models include: cloud deployment, on-premises deployment,

hybrid deployment, federated deployment, and edge deployment.

Cloud Deployment: Internet service providers typically adopt cloud deployment
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to enable rapid AI application provisioning and extensive user coverage. Leading

enterprises usually build proprietary AIDC to support their own service requirements

while offering computing power leasing services. For small and medium enterprises,

establishing proprietary AIDC incurs high investment and maintenance costs, making

them more inclined to lease computing power for rapid AI application deployment

and iteration.

On-Premises Deployment: On-premises deployment is particularly suited for

industries such as finance, healthcare, and manufacturing that require stringent data

security and compliance. This approach enables enterprises to maintain full control

over their data, ensuring all data processing and storage remain within their internal

networks while delivering ultra-low application access latency. However, the

continuous scaling of AI models results in prohibitively high costs and demanding

operational requirements for on-premises deployment.

Hybrid Deployment: Hybrid deployment combines the advantages of cloud and

on-premises deployment, enabling enterprises to process sensitive data locally while

utilizing cloud resources for non-sensitive data processing. Enterprises can process

latency-critical tasks locally while strategically offloading compute-intensive or

non-core workloads to cloud, optimizing both on-premises hardware investments and

operational expenditures. Hybrid deployment provides enterprises with a balanced

solution for performance, security, and cost, making it one of the increasingly

preferred approaches for deploying AI applications.

Federated Deployment: Federated deployment leverages distributed computing

to enable multiple enterprises to collaboratively train a more effective global model

without sharing privacy data. Specifically, each participant trains AI model locally,

then transmits the encrypted model parameters to a central server for aggregation,

generating an improved global AI model that is subsequently distributed to all

participants. Federated deployment facilitates collaborative learning across multiple

participants while preserving data privacy, delivering an innovative and practical

deployment approaches for AI applications.
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Edge Deployment: Edge deployment targets scenarios requiring real-time

processing and rapid response, such as autonomous driving, industrial control systems,

and smart home. For instance, in autonomous driving, edge-deployed AI applications

enable real-time analysis of data from cameras, radars and sensors to facilitate instant

decision-making, ensuring rapid response to environmental changes. In industrial

control systems, edge-deployed AI applications maintain continuous operation even

without stable network connectivity, guaranteeing uninterrupted production.

2.3 AI applications impose new requirements on

MANs

MANs interconnects heterogeneous computing resources and diverse user

terminals within the region, providing connectivity for various deployment models

including cloud deployment and hybrid deployment, and serving as a critical

infrastructure for the sustained development of AI. Developing MANs like urban

power grids or water grids to enable ‘one-point access, on-demand computing’

computing power services has progressively become an industry-wide consensus.

The AI models required for different application scenarios exhibit significant

variations, which can be categorized by scale into two distinct types: large models and

small models. Small AI models typically refer to those with fewer parameters and

shallower layers, characterized by their lightweight architecture, computational

efficiency, and deployment flexibility. These models are specifically optimized for

dedicated tasks and vertical domains, with representative implementations including

DistilBERT, TinyBERT, and MobileNet. Large AI models refer to those with massive

parameters and sophisticated computational architectures, exhibiting enhanced

representational power and superior accuracy to handle more sophisticated tasks, with

representative examples including Deepseek, GPT-4, Qwen. Diverse AI model impose

significantly differentiated requirements on MANs.
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2.3.1 Requirements of large AI model

Figure 2-1: Requirements of Large AI Model

The lifecycle of large AI models encompasses multiple stages including sample

data transmission, model training and model inference, each presenting distinct data

transmission characteristics in terms of volume and patterns, consequently imposing

higher requirements on MANs.

1. Transmiting sample data into AIDC

With the rapid advancement of large AI models, data volume is growing at an

unprecedented rate. According to the Global DataSphere 2023 report released by IDC

(International Data Corporation), China's data volume reached approximately 30 ZB

in 2023 and is projected to expand to 76.6 ZB by 2027. Currently, numerous

enterprises still rely on shipping physical hard drives to transfer sample data. This

‘manual copying + physical delivery’ approach is not only inefficient but also carries

data loss risks. Existing network-based solutions exhibit significant limitations:

traditional dedicated line services adopt fixed-bandwidth monthly/annual subscription

models, while enterprises typically require only intermittent sample data transfers,

resulting in high costs relative to actual usage. MANs requires capability upgrades to
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provide more efficient and cost-optimized sample data transmission services.

MANs should support network scale load balancing to achieve sustained

ultra-high throughput exceeding 90% across all links, enabling efficient hourly

transmission of terabyte(TB)-scale sample data from enterprise to AIDCs.

Simultaneously, MANs should feature highly elastic and agile service

capabilities, offering on-demand elastic bandwidth to enterprises through ‘just-in-time

provisioning’ task-based services, while providing multi-level data transmission

services (minute-level, hour-level, and day-level) to meet diverse user demands.

Furthermore, MANs should possess intelligent computing power orchestration

capabilities to dynamically match optimal computing-network resources and

transmission paths based on service characteristics including origin, type and

coverage area, thereby establishing a more agile and efficient computing power

provisioning system.

2. Model Training with Storage and Compute Disaggregated

Numerous industries handle sensitive data with critical security requirements, ,

such as the experimental and accident data in automotive manufacturing, or consumer

transaction records and personally identifiable information in financial. When leasing

cloud computing resources, these organizations or enterprises strictly require the

localized storage of data and the guaranteed protection against data leakage during

model training. To address these data security requirements, model training requires

the disaggregated storage and compute architecture (with compute nodes deployed in

cloud and storage nodes maintained on-premises), where training data is pulled into

memory on-demand without being written to compute node disks.

In this scenario, sample data is directly written from storage nodes to compute

node memory across MANs through RDMA technology. Current mainstream RDMA

protocols rely on Go-Back-N retransmission mechanisms, making them highly

sensitive to latency and packet loss (Even a 0.1% packet loss rate can degrade

computational performance by 50%). Therefore, MANs should not only support

highly resilient and high-throughput data transmission, but also incorporate precise
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flow control to guarantee lossless RDMA transmission, ensuring less than 5%

computational efficiency degradation across 100-500 km metropolitan domains.

Moreover, MANs should deploy robust data encryption mechanisms to ensure the

security of data transmission.

3. Coordinated model training among across AIDCs

The Scaling Law for large AI models persists, with computing power demands

having grown by approximately one million-fold over the past decade, and projected

to sustain an annual growth rate exceeding 400%. The scalability of individual

computing resource pools is constrained by physical infrastructure limitations

including space and power supply. Coordinated model training among multiple

AIDCs enables the efficient consolidation of geographically dispersed computing

power, supporting large AI model training at scales of 100K+ GPUs. The computing

power of existing AIDCs is typically small-scale (in China, AIDCs with 100-300

PFLOPS account for over 70% of the total). Therefore, integrating distributed

computing power across data centers, research institutions, and cloud service

providers will help overcome geographical, facility, and vendor constraints to

establish a unified and high-efficiency computing power service platform.

In this scenario, parameter-plane synchronization data is transmitted across

MANs while sample-plane data remains stored within enterprise premises, effectively

isolating potential data leakage risks. This solution imposes stringent requirements on

network bandwidth and latency, mandating MANs to deploy 400G/800G links with

RDMA lossless transmission to guarantee zero packet loss during model training.

Parameter synchronization between GPUs predominantly relies on

AllGather/AllReduce collective communication operations, introducing significant

challenges of highly concurrent and burst traffic patterns. Taking the training of a

1000 billion parameters model as an example, a single parameter synchronization

cycle in a 16K GPU AI cluster generates over 1.6 PB concurrent traffic. Therefore,

MANs require device capability upgrades (including GB-level port buffers and

tenant-level queuing) to enable optimized burst traffic processing and collective
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communication scheduling, while establishing high convergence ratio network

architectures (4:1, 8:1, 16:1) to balance computational efficiency with deployment

costs. Furthermore, network failures causing critical issues such as training task

interruptions would severely reduce training efficiency. MANs should implement

tenant-level network slicing isolation and incorporate network simulation and

self-healing technologies to realize Level 4 autonomous network,

guaranteeing controllable failure impact scope and rapid service recovery.

4. Cloud-Edge Collaborative Model Training/Inference

The dramatic reduction in large model training and inference costs has enabled

enterprises to rapidly adopt AI applications through on-premises deployment of AI

Training & Inference server. However, enterprise on-premises computing resource

pools encounter significant challenges in capacity expansion and high operational

maintenance costs, rendering them inadequate to meet the escalating demands for

model fine-tuning and inference. To address this, the cloud-edge collaboration

between enterprise on-premises and cloud computing resource pools presents a more

efficient, agile, and cost-effective approach to realize elastic computing power scaling.

This solution leverages parallel computing techniques including pipeline parallelism

and expert parallelism to partition large AI models across on-premise and cloud

computing resource pools. By implementing localized deployment of input/output

embedding layers, it ensures strict on-premises sample data containment, thereby

fulfilling the data security requirements for highly regulated sectors such as financial

and healthcare.

In this scenario, MANs should support lossless RDMA transmission to prevent

significant computational efficiency degradation caused by packet loss.

Simultaneously, MANs requires tenant-level network slicing to ensure effective

service isolation, meeting SLA requirements while preventing interference from other

service failures. Furthermore, MANs should possess intelligent computing power

scheduling capabilities to dynamically select optimal edge resource pools based on

user location and service demands, ensuring efficient model fine-tuning/inference
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processes.

5. Inference Delivery

AI inference enables large AI models to be applied in real-world scenarios,

serving as the critical step for commercialization. By 2027, approximately 70% of

new applications are expected to incorporate AI inference models, with concurrent

transactions between AI applications and resource pools anticipated to reach the

million-scale threshold. Inference delivery comprises two fundamental processes:

model delivery, referring to the deployment of AI inference models across multiple

edge clouds; and result delivery, denoting the interaction between users and AI

inference models to generate required outputs.

In this scenario, MANs should provide low-latency and high-bandwidth data

transmission capabilities with ubiquitous coverage and seamless access to ensure the

service quality of AI applications. MANs should also incorporate deterministic

service capabilities, enabling precise traffic identification and optimized path

selection to enhance transmission determinism and reliability.

2.3.2 Requirements of small AI model

Small AI models feature compact architecture, low computational demands, and

rapid response capabilities. These models are typically designed for specialized tasks

and demonstrate unique advantages in resource-constrained environments such as

smart terminals and IoT devices. With their widespread deployment across smart

home systems, industrial IoT applications, and mobile platforms, they are imposing

more requirements on MAN.

1. Inference Delivery

In real-time AI inference, small AI models are predominantly deployed on edge

devices proximal to data sources, enabling instantaneous processing of input data and

generation of predictive outputs to achieve ultra-low latency response. For scenarios

requiring greater computational power, edge nodes collaborate with cloud in a hybrid

deployment architecture. Edge devices process routine high-frequency inference
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requests locally, while computationally intensive or anomalous cases are offloaded

through MANs to cloud for deep analysis. MANs should provide guaranteed

bandwidth, deterministic low-latency path, and intelligent traffic orchestration

capabilities to ensure reliable and real-time AI inference service delivery.

2. Federated learning

Federated learning is a critical training paradigm for small AI model. It adopts

Federated deployment that significantly enhances model efficacy while ensuring local

data privacy preservation, imposing three critical requirements on MAN: First,

real-time parameter synchronization demands guaranteed periodic connectivity for

participants to maintain training continuity; Second, data transmission security

requires end-to-end encryption for model parameters to prevent any potential model

leakage; Third, MANs should incorporate dynamic resource allocation capabilities,

allocating greater bandwidth to higher-priority participants based on their differential

training progress.

2.3.3 Requirements of hybrid AI model

Hybrid AI model deploys lightweight small AI models at edge while hosting large

AI models with advanced comprehension and reasoning capabilities in the cloud.

Through efficient collaboration between these models, hybrid AI Model fully

leverages the small model's advantages in low-latency response and personalized

adaptation while harnessing the large model's capabilities in multi-modal

understanding and generalized intelligence.

The coordination between large AI models and small AI models is primarily

reflected in two critical aspects: data interaction and model updating. For data

interaction, edge-deployed small AI models perform localized data collection and

preprocessing before transmitting critical data to cloud-deployed large AI models for

analysis, with the calculation results subsequently delivered back to edge devices for

execution. This process requires MANs to provide deterministic service capabilities

that ensure low-latency, high-bandwidth, and highly stable data transmission. For
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model updates, cloud-deployed large AI models can distribute optimized parameters

or models to edge devices through techniques such as knowledge distillation, enabling

continuous iteration of small AI models. This process relies on the network-level load

balancing capability of MANs to realize high throughput, particularly during

concurrent updates across massive edge devices.

2.4 AI applications driven MANs toward

next-generation evolution

The rapid advancement of AI applications is imposing more stringent demands on

MAN: At the architectural level, MANs should support efficient north-south and

east-west traffic steering to meet cloud-edge and inter-cloud coordination

requirements, while enabling elastic scalability to achieve ubiquitous user access. At

the technical level, MANs should incorporate capabilities including network-scale

load balancing, flow-level precise flow control, and high oversubscription ratio

networking to support ultra-large-scale AI computing traffic, while ensuring real-time

interactive experience through deterministic services and tenant-level network slicing.

At the operational level, MANs should strengthen service-oriented capabilities to

provide flexible and agile computing power services for users, while enhancing

intelligent O&M capabilities to ensure high stability and reliability of services. At the

scheduling level, MANs should establish an intelligent cross-domain coordination

system to achieve global optimal allocation of computing power, storage and network

resources. These requirements are accelerating the transformation of MANs into

next-generation intelligent, converged, and deterministic AI infrastructure, enabling

continuous innovation in cloud-network integrated products and services.
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Chapter III

MAN Architecture for the
AI Era
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3.1 MANs design objectives

The metropolitan area networks (MANs) design for AI era focuses on the

construction of the next-generation network infrastructure with deeply integration

between computing and network, and is intelligent, efficient, secure, and reliable. The

core directions are as follows:

1. Integrated computing and network, converged bearer

Centered on the computing resource pool, MANs can integrate the heterogeneous

computing power of general computing, intelligent computing, and supercomputing.

SRv6 and other technologies are used to uniformly schedule and intelligently

orchestrate network, cloud, and compute resources, breaking physical isolation.

Supports lossless transmission of heterogeneous computing power across domains

and collaborative training of multiple AIDCs, building a foundation for cloud-network

synergy innovation. Unified access of fixed, mobile, and cloud services and

converged bearer of multiple services, achieving ubiquitous access of users. By

building intelligent, agile, secure, and reliable high-quality network infrastructure,

MANs can effectively support efficient collaboration of multi-dimensional services

and provides end-to-end all-scenario connection services for digital transformation

and smart upgrade of industries.

2. Elasticity, agility, flexibility, and efficiency

Based on the Spine-Leaf modular architecture and IPv6 Enhanced technology

foundation, agile network expansion and service provisioning in minutes can be

achieved. Intelligent identification of elephant flows and network flow-level

scheduling enable network-level load balancing and refined management and control

of service flows, ensuring high throughput and low latency transmission performance,

implementing quick traffic grooming and high user experience access, and

comprehensively improving the overall network transmission efficiency.

3. Precise control and dynamic convergence

Based on intelligent flow identification and precise flow control technology, and

the deterministic delay forwarding and network convergence optimization mechanism,
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the RDMA high-performance lossless interconnection architecture is constructed.

Based on the intelligent flow-level scheduling capability and the flexible computing

power-oriented network architecture, dynamic collaboration between enterprise

computing power and hub computing power centers is supported. On-demand service

flow adaptation and precise resource orchestration effectively support TB-level data

throughput requirements for large AI model training and inference, achieving the

optimal balance between network construction costs and computing efficiency.

4. Intelligent O&M, security and reliability

The AI-driven intelligent management and control system is deployed to build

intelligent O&M capabilities such as flow-level scheduling optimization, fault

self-healing, and network simulation. The dual-plane redundancy architecture and

cross-domain disaster recovery mechanism ensure high system availability. Network

slicing, tenant-level flow control, and standard security interfaces are used to establish

a multi-layer security isolation system. Integrated with technologies such as

zero-packet-loss transmission assurance and end-to-end QoE degradation detection to

ensure reliable transmission over all paths of data pipelines and redundant protection

for multi-plane computing boundaries, ensuring secure and reliable service running

throughout the service lifecycle.
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3.2 Overall MAN architecture

Figure 3-1: MANs Architecture for the AI Era

The MAN architecture for the AI era consists of three core modules: Computing

power-oriented Point Of Delivery (POD) zone, Computing power-oriented Point Of

Presence (POP) zone, and Computing power-oriented interconnection zone. The three

modules seamlessly collaborate with the cloud-network operation system through

standard interface and protocols. A tailorable and hot-swappable building-block

architecture is used to achieve elastic scaling of computing resources as required.

 Computing power-oriented POD zone: This module introduces PODs in the data

center to the MAN. Based on the spine-leaf modular architecture, this module

enables efficient access of customer terminals and enterprise branches through

optical fibers, PON, and 5G, and supports large-capacity data exchange, fast

convergence and traffic diversion of fixed and mobile services and intelligent

computing services in a region. SRv6 and EVPN technologies are used to carry

multiple services in a unified manner. The cloud & network operation system is

used to achieve automatic service provisioning and intelligent O&M. The

network slicing technology provides customized bandwidth and security
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assurance for intelligent computing, industry, and public services.

 Computing power-oriented POP zone: As the interconnection point between the

cloud network and the bearer network, this module interconnects with the

computing power resource pool in a standard manner to implement on-demand

scheduling and elastic allocation of computing power resources, so as to support

integrated computing-network services. Serves as the network anchor of the

computing resource pool, it connects to provincial/regional spine nodes, opens up

inter-computing channels, and supports cross-domain resource collaboration and

disaster recovery. Interworks with the computing power-oriented POD zone to

provide end-to-end lossless connection between users in different PODs and

computing power resource pools.

 Computing power-oriented interconnection zone: This module serves as the hub

between the MAN, backbone network, Internet, and industry private networks. It

simplifies the connection between the MAN and external networks and between

various computing power resource pools, implements flexible component

expansion, and efficiently diverts traffic between components. Uses 400G/800G

high-speed links, network-level load balancing, and SRv6/EVPN technologies to

achieve efficient inter-domain traffic forwarding and path optimization. The

network slicing technology provides differentiated bandwidth and security

assurance for intelligent computing services, ensuring stable service

interconnection and user experience.

The three module zones together constitute the MAN architecture oriented to the

AI era. Each module zone plays a specific role to ensure the efficient bearing of AI

services on the MAN. The computing power-oriented POD zone functions as the user

access entry and connects to the computing power-oriented POP zone through spine

devices to build efficient transmission channels between users and the computing

power resource pool. The computing power-oriented interconnection zone and

computing power-oriented POP zone are connected to the cross-domain computing

power pool collaboration network to implement intelligent scheduling of computing
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power resources. The three modules use standard technologies such as SRv6 and

EVPN to ensure end-to-end service logic consistency and provide high-quality

network bearer capabilities for AI services.

Based on the concept of hierarchical decoupling and collaborative design, the

architecture builds an integrated computing service network featuring edge access,

core scheduling, and cross-domain collaboration. It uses the cloud-network operations

system to implement unified management and control and intelligent scheduling of

network-wide resources. The cloud network operation system focuses on four core

modules: resource management, computing power scheduling, service orchestration,

and operation assurance. Resource management integrates network and computing

power resources to achieve global visibility and management, and computing power

scheduling dynamically optimizes resource allocation based on service requirements.

Service orchestration implements quick service deployment and end-to-end

integration through automated processes. Operation assurance uses intelligent

monitoring and analysis technologies to ensure stable system running and user

experience. The collaborative operation of modules provides a solid foundation for

the computing power requirements of high concurrency, low latency, and high

reliability in the AI era.

3.3 Key modules of MAN

3.3.1 Computing power-oriented POD zone

The computing power-oriented POD zone is the edge access layer of the MAN

and provides converged access for customer terminals (2C), enterprise branches (2B),

and home users (2H). Aggregates traffic level by level through base stations, CPEs,

leaf nodes, and spine nodes to form a wide-coverage and flexible computing service

entry. In addition, deep and shallow edge computing can be mounted on demand,

providing customers with low-latency and high-experience computing services. Its

core functions include:

 Converged access: supports multiple access modes, such as optical fiber, PON,
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and 5G, implementing "one-line for multi-computing". A single line can meet the

access requirements of Internet, cloud services, and multi-computing power

pools.

 Elastic bandwidth: Provides elastic access capabilities from 0 to 100 Gbit/s,

adapting to changes in customers' computing power requirements.

 Pooling scheduling: Supports deep and shallow edge computing power pooling

and cross-POD scheduling, flexible coverage based on the service scale or

service scope, achieving efficient computing resource transmission.

Figure 3-2 Computing power-oriented POD Zone

The computing power-oriented POD zone uses a wide-coverage and

level-by-level convergence networking architecture to dynamically balance the

computing power resource utilization while reducing network coverage costs. Precise

scheduling and control at the flow level ensure data transmission quality based on the

RDMA protocol, and effectively support long-distance lossless transmission in

scenarios where massive samples are quickly processed and storage and computing

are separated. In addition, the operation system has the flexible and agile resource

configuration capability. By dynamically adjusting network paths and bandwidth

resources, the operation system effectively copes with service traffic fluctuation and

ensures service continuity and stability.
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3.3.2 Computing power-oriented POP zone

The computing power-oriented POP zone connects the MAN and computing

power resource pool through the computing power gateway, implementing

standardized and fast interconnection between the sample plane network and service

plane network of the MAN and computing power resource pool. The computing POP

zone provides standardized functional zone interconnection policies and deployment

guidance, supporting integrated bearing and resource scheduling of multiple services.

Its core functions include:

 Modular networking: Standard modules connect to heterogeneous computing

resource pools (self-owned or third-party) to implement resource pooling and

unified management.

 End-to-end lossless connection: Connects to provincial/regional spine nodes and

associates with multiple computing power PODs to provide low-latency and

high-reliability connections between users in different PODs and computing

power pools.

 Intelligent computing service support: Stream-level precise flow control is used

to meet service requirements such as sample input calculation, model training

with storage and compute disaggregated across AIDCs, and cross-cluster

collaborative training.

Figure 3-3 Computing power-oriented POP Zone
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The computing power-oriented POP zone supports multi-service convergence and

supports various services, such as general computing and intelligent computing. As

the north-south traffic scheduling hub, the computing gateway intelligently

interconnects with the sample plane and service plane networks of the computing

resource pool through standard interconnection policies. The computing power POP

establishes high-speed links with provincial or regional spine nodes and multiple

PODs to form an end-to-end connection between users, computing PODs, computing

POPs, and computing resource pools.

3.3.3 Computing power-oriented interconnection zone

As the core hub node of the MAN, the computing power-oriented interconnection

zone connects the computing power-oriented POD zone and computing

power-oriented POP zone to the backbone network and Internet egress through

400G/800G high-speed links. The network slicing technology provides differentiated

bandwidth and security assurance for intelligent computing services, ensuring stable

service interconnection and user experience. Its core functions include:

 Differentiated services: Based on technologies such as precise traffic

identification to classify and mark different service flows, so as to provide

differentiated service quality assurance for different types of services, and meet

different requirements for latency, bandwidth, and packet loss rate of various

services. Ensure that mission-critical services and high-value services can obtain

priority processing and better network resources.

 Traffic scheduling and steering: Schedules and manages the traffic in each

functional zone of the MAN in a unified manner, and steers the traffic to different

links and paths based on the network load, service requirements, and predefined

policies. In this way, the traffic is evenly distributed and the network resource

utilization can be improved.

 High-speed network interconnection: As the hub for connecting MANs to

backbone networks, other MANs, computing power-oriented POPs, and
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computing power-oriented PODs, the uses 400G/800G links to implement

high-speed interconnection between different networks. Exchanges routing

information with external networks, ensures that data packets can be correctly

forwarded between the MAN and external networks, and ensures smooth

transmission of various services between different network domains.

Figure 3-4 Computing power-oriented interconnection zone

The computing power-oriented interconnection zone builds an integrated MANs

base of "high-speed interconnection and intelligent scheduling". Support service

innovation through differentiated services, release computing resource efficiency

through intelligent scheduling, break down cross-domain collaboration barriers, and

enable computing power circulation and converged applications of new network

infrastructure.
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Chapter IV

MAN Key Technologies
for the AI Era
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4.1 Integrated computing and network, converged

bearer network

4.1.1 Unified service bearer network

In the AI era, MANs are facing new challenges brought by the sharp increase in

computing power collaboration and data transmission requirements. Therefore, the

unified protocol stack is urgently required to carry multiple fixed, mobile, cloud, and

computing services simultaneously, reducing network complexity. Service

deployment and O&M efficiency is significantly improved. The SRv6 and

EVPN-based converged architecture provides an ideal solution for unified service

bearer network. It implements logical isolation and flexible scheduling of services on

a single network, avoiding architecture redundancy caused by multiple traditional

networks and greatly improving network resource utilization. Its core strengths are as

follows:

 Unified user access: SRv6 supports cross-domain end-to-end connections based

on IPv6 native protocols. Enterprise users can meet multiple service requirements

with only one access, significantly reducing access complexity.

 Unified service bearing: EVPN provides flexible Layer 2/Layer 3 VPN services

and SRv6 source routing capabilities to dynamically adapt to various service SLA

requirements, implementing intelligent traffic scheduling and resource

optimization.

 Convenient service provisioning: Intelligent O&M technologies such as

autonomous driving network enable automatic service orchestration and

minute-level service provisioning, significantly improving network agility. In

addition, SRv6's network programmability lays a foundation for AI-driven

network optimization, further improving network resource utilization and

intelligence.
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4.1.2 Intelligent scheduling of computing power

In ubiquitous computing power scenarios, MANs face the core challenge of

dynamic matching of computing power supply and demand. Therefore, key problems

such as resource dispersion, requirement diversity, and task real-timeness need to be

resolved. MANs needs to build an intelligent scheduling mechanism for computing

power. The mechanism implements dynamic pricing and task allocation by real-time

sensing of supply and demand status and algorithm optimization, ensuring efficient

utilization of computing power resources and meeting users' core requirements for

low latency, high reliability, and low cost.

The core objective of intelligent scheduling of computing power is to achieve

dynamic matching between supply and demand and improve the collaboration

efficiency of computing power resources. Based on the geographical location,

resource type, and real-time load of the supplier, as well as the service SLA

requirements and task characteristics of the demander, the global computing power

awareness and unified measurement system are constructed. In this process, SRv6

uses flexible and programmable features to deeply bind computing power scheduling

and service requirements through network path optimization. Intelligent scheduling of

computing power builds a closed-loop system featuring dynamic resource awareness,

SRv6 path optimization, and intelligent decision-making to implement precise

scheduling of heterogeneous resources across domains and provide low-latency and

high-elastic computing power assurance for computing scenarios such as general

computing, intelligent computing, and supercomputing.

4.2 Elasticity, agility, flexibility and efficiency

4.2.1 Task-based scheduling

The task-based scheduling technology facilitates the off-peak transmission of

non-real-time tasks (such as data backup tasks) and improves the utilization of idle

network resources. This technology is based on the intelligent closed-loop mechanism
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of "requirement awareness-resource prediction-dynamic fulfillment", which improves

resource utilization efficiency and user experience. First, the operation system

receives user transmission requirements through standardized interfaces and performs

multi-dimensional feasibility evaluation based on historical bandwidth data. and feed

back a committed transmission time window to the user. Second, the network slicing

technology is used to dynamically allocate physical port resources, and dedicated

transmission channels are provided for users. Finally, the transmission quality is

monitored in real time during the task execution and bandwidth resources are

automatically released after the task is complete.

Figure 4-1: Task-based scheduling process

The task-based scheduling technology implements end-to-end automated service

processes, greatly optimizes the response time from requirement submission to

resource readiness, and significantly improves network-wide resource utilization. This

technology establishes a precise time-effective guarantee mechanism, and relies on

path pre-computation and dynamic optimization algorithms to ensure the

deterministic commitment of transmission time-effectiveness. The digital twin

network is used to simulate complex tasks, build intelligent resource scheduling

capabilities, and implement conflict avoidance and global optimal orchestration in

multi-task concurrency scenarios. Finally, the dynamic and accurate matching

between network resource supply and user demand fluctuation in seconds is achieved.

4.2.2 Elastic bandwidth

In typical application scenarios, such as massive sample data storage, enterprises

face bandwidth configuration problems caused by periodic data transmission peak
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hours. Long-term use of high-bandwidth private lines will waste resources during idle

periods, while low-bandwidth private lines will idle computing resources due to long

transmission delay. The elastic bandwidth technology enables dynamic on-demand

expansion of bandwidth resources and relies on the service agility of the management

and control domain, effectively solving the dilemma of "high bandwidth cannot be

used and low bandwidth cannot be used".

The elastic bandwidth technology implements dynamic scheduling of bandwidth

resources by constructing in-depth collaboration between the network and the

operation system. This technology receives bandwidth adjustment instructions from

users based on standard service interfaces, builds automatic service orchestration

capabilities based on the operation system, and supports minute-level synchronous

adjustment of port rates, QoS policies, and routing entries. The entire process forms a

closed-loop control of requirement awareness, policy generation, and resource

reconstruction, implementing elastic scaling of the bandwidth of a single private line

within the range of 100 Mbit/s to 10 Gbit/s/100 Gbit/s. This technology not only

provides enterprises with minute-level online scale-out and scale-in agile response

capabilities, effectively copes with the instantaneous requirements of network

resources caused by burst services, but also supports precise charging based on

duration and usage, significantly improving the network service capability.

4.2.3 High-bandwidth links

The rapid development of intelligent computing services imposes higher

requirements on link bandwidth. To meet the requirements for uploading TB/PB-level

enterprise sample data in minutes or hours at a high speed, MANs are accelerating

link upgrade. Edge nodes use 100G high-speed access, and 400G high-bandwidth

links are deployed at the aggregation layer to carry aggregated traffic. In addition, to

cope with the insufficient computing power of a single intelligent computing center,

resources of multiple intelligent computing centers need to be integrated to support

large model training. In this context, 400G high-speed links have been widely used on
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data center parameter plane networks, and MANs need to be upgraded to 400G

architecture to improve bandwidth utilization and dynamic scheduling capabilities and

build high-capacity network infrastructure.

Increasing the rate of a single port is a key technology for efficient and low-cost

transmission of ultra-large-scale traffic. It has become the core evolution direction of

the intelligent computing Internet. Currently, the 400GE port technology for metro

interconnection has become mature. Large-scale deployment of 400G interconnection

links can effectively reduce the single-bit transmission cost of intelligent computing

interconnection, lay a foundation for future evolution to 800G technology, and

continuously optimize the transmission cost per bit.

4.2.4 Network-level load balancing

large AI model implements distributed training based on aggregate

communication. Traffic has the characteristics of high synchronization, large traffic,

and periodic transmission. In this service mode, each equal-cost path in the network

carries a large number of data flows at the same time. As a result, the traditional

hash-based load balancing technology cannot achieve complete balance between

paths. Network-level load balancing is used to solve the problem of packet loss

caused by congestion on a non-faulty homogeneous network in the cross-AIDC

collaborative training scenario. In the non-fault scenario, the network device does not

have faults such as optical module damage and intermittent link disconnection. In the

homogeneous scenario, the bandwidth and delay of the network device are

symmetrical and synchronized. This technology effectively improves network

transmission efficiency in intelligent collaborative training scenarios by optimizing

the traffic allocation mechanism.

Network-level load balancing implements conflict-free and balanced scheduling

between paths through unified network-wide traffic planning. In this mechanism, the

network device first collects the traffic information of the service in real time and

reports the information to the network controller. The network controller runs the
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global route selection algorithm based on the topology status and traffic

characteristics, and intelligently allocates the optimal transmission path to each flow.

Finally, the controller delivers the path decision to the network device to perform path

adjustment. This dynamic traffic scheduling mechanism based on the global

perspective implements efficient and even load distribution, achieves the end-to-end

flow transmission efficiency of over 95%, and effectively ensures the efficient and

stable running of the training process.

4.3 Precise control and dynamic convergence

4.3.1 Intelligent identification and scheduling of elephant

flows

In the AI era, the traffic characteristics of MANs are undergoing a remarkable

transformation. The traditional service mode based on massive small and micro flows

is gradually evolving to new service forms such as AI training and distributed

computing, which are characterized by high bandwidth and long-term elephant flows.

Such heavy-traffic services are prone to network congestion and cause overall

throughput performance deterioration. Therefore, an intelligent traffic identification

and scheduling system is required to improve network resource utilization and ensure

efficient transmission of key AI services and overall network performance.

The intelligent identification and scheduling technology of elephant flow traffic

builds a closed-loop optimization system of "perception - decision making -

execution" to maximize the global network capacity. This technology detects elephant

flows in real time through in-depth traffic feature analysis, and reports fine-grained

data such as flow features and throughput to the controller in real time by using the

Telemetry technology. Based on the SRv6 programmable feature and real-time

network situation (such as topology status and link load), the controller establishes an

accurate matching model between traffic requirements and resource provisioning and

dynamically generates an optimal SRv6 scheduling policy. By intelligently guiding
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elephant flows to the optimal path, this technology not only ensures that the

throughput of AI services approaches the physical bandwidth limit, but also

significantly reduces the link congestion probability through flow-level precise

scheduling, building a transmission environment with high throughput, low latency,

and low congestion, and providing reliable assurance for large-scale data exchange.

For RDMA service, it can also split the elephant flow based on the information in the

inner headers of the packet, so as to implement fine-grained traffic identification and

management.

4.3.2 Precise flow control

With the rapid development of intelligent computing services, such as

cross-AIDC collaborative training and cloud-edge collaboration training/inference,

the wide application of the RDMA transmission protocol poses higher requirements

on the flow control mechanism of the MAN. Currently, PFC mechanism is widely

used in data centers to ensure lossless transmission. However, the coarse-grained

control at the port queue level is prone to head block and false damage problems. In

contrast, the data flow-based precise flow control technology implements flow-level

precise backpressure control through fine-grained identification based on IP 5-tuple.

This technology not only effectively resolves the inherent defects of traditional PFC,

but also dynamically optimizes flow control policies based on real-time network

status. This feature ensures efficient and stable data transmission in complex WAN

multi-tenant scenarios and provides a better bearer environment for RDMA services.

Figure 4-2: Flow-level precise flow control technology
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To meet the lossless transmission requirements of the RDMA protocol, the

flow-level precise flow control technology builds a fine-grained control system. This

technology breaks through the limitations of traditional PFC physical port-level

control. It allocates an independent queue buffer to each RDMA service flow and

monitors the buffer water level in real time, implementing finer traffic management.

When congestion occurs on a specific service flow, the system isolates and stores the

packet in the dedicated buffer. When the queue depth exceeds the preset threshold, the

system sends flow-level backpressure signals to the upstream device in hop-by-hop

backtracking mode. This technology only limits the rate of the congested flow,

effectively avoiding the problems caused by the traditional PFC technology, such as

queue head congestion. The practical test shows that the proposed technology can

control the end-to-end packet loss rate of wide area RDMA transmission below

0.001%, and keep the stable throughput rate above 95%. Then the risk of network

congestion spreading is eliminated completely by the fault domain isolation

mechanism between service flows.

4.3.3 High convergence ratio network

In the cross-AIDC collaborative training scenario, MANs needs to carry

large-scale parameter plane data synchronization between multiple data centers. For

example, the 200 Gbit/s transmission rate of a single NIC leads to the peak burst

traffic on the parameter plane as high as 2000 Tbit/s. If the non-convergence

networking solution is used, the construction cost is high. Therefore, the high

convergence ratio networking technology implements efficient convergence of

cross-DC collaborative training traffic by using an in-depth collaborative optimization

of a set communication algorithm and a network architecture, thereby significantly

reducing deployment costs of network infrastructure between multiple AIDCs.

This technology innovatively adopts the three-in-one collaborative mechanism of

"algorithm-based peak reduction, cache peak clipping, and scheduling acceleration",

which can maintain over 95% end-to-end computing efficiency under the network
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architecture with high convergence ratios, such as 32:1 and 64:1. A new network

paradigm adapted to cross-AIDC collaborative training is constructed. Its core lies in

the reconstruction of the aggregate communication process by using the hierarchical

gradient aggregation algorithm, effectively reducing the number of computing cards

for cross-DC communication, and realizing the initial convergence of network

bandwidth. In addition, smart routers with large-capacity buffers are deployed on

MANs. The dual mechanism of "burst buffering + queue scheduling" is used to split

training tasks into controllable microburst flows. The cache is used to absorb traffic

impact and priority scheduling is used to ensure the timely transmission of GPU

control signaling. Avoids idle waiting of computing resources, thereby significantly

reducing bandwidth requirements across data center network while ensuring training

efficiency.

4.3.4 deterministic service network

In recent years, with the booming rise of intelligent computing service, the

application scenarios of inference service are becoming more and more extensive. The

transition of inference service from single mode to multi-mode and the continuous

evolution towards real-time interaction imposes more stringent requirements on the

network. On the one hand, the network needs to be characterized by deterministic low

latency to ensure real-time, smooth presentation of inference result, avoiding frame

freezing and latency. On the other hand, deterministic bandwidth services are also

indispensable. They can ensure stable network bandwidth and uninterrupted data

transmission during a large amount of data transmission without congestion.

Therefore, the network needs to provide deterministic network services.

The deterministic network technology can partition network resources into

different logical networks and provide independent logical networks for different

services to implement differentiated services. With SRv6 and Flex-E technology, it

can plan data transmission paths more flexibly and optimize network traffic

distribution. using SRv6 with the network controller, low-latency path computation is
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implemented, effectively ensuring service latency. The network controller collects

network topology and link status information in real time. Based on the collected

information and the path programmable feature of SRv6, the network controller

computes the optimal path that meets the latency requirement for services. When

service data enters the network, the SRv6 path is forwarded along the planned SRv6

path to avoid congested nodes and links, reducing the transmission delay. In addition,

through Flex-E bandwidth reservation mechanism allocates dedicated bandwidth

resources to services, ensures that the bandwidth requirements of specific services can

be met even when the network is congested or busy, preventing service performance

deterioration caused by bandwidth contention, ensuring service bandwidth and service

experience even when the network load is heavy.

4.4 Intelligent O&M, security and reliability

4.4.1 Intelligent O&M capability

With the rapid development of technologies such as 5G, Internet of Things (IoT),

and edge computing, MANs are facing challenges such as traffic surge, service

diversification, and strict service quality requirements. The traditional O&M mode

based on manual rules and static policies cannot meet the real-time, reliable, and

flexible network requirements in the AI era. Therefore, an intelligent O&M system is

urgently required for MAN networks. TMF defines network autonomy as six levels

(L0 to L5). The core of the intelligent O&M system for MANs in the AI era is to build

a new network AI brain that features self-sensing, self-analysis, self-decision-making,

and self-deployment, helps the network autonomy level to evolve from L3 conditional

autonomy to L4 advanced autonomy, and finally achieves the goal of L5 complete

intelligent autonomy.

The MAN intelligent O&M system is constructed based on multiple key

technologies. First, distributed probes and embedded AI chips are deployed to realize

multi-dimensional real-time network status awareness. Second, the intelligent analysis

engine built based on deep learning processes massive O&M data in real time. Finally,
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the SDN controller and automatic orchestration system are used to deliver and adjust

policies in seconds. The following are the key intelligent O&M capabilities:

 High-precision simulation: Real-time online digital mirroring network is

constructed to implement multi-level visualized simulation of physical topology,

routes, tunnels, VPNs, and flows. The system automatically synchronizes live

network configurations, BGP routes, and traffic characteristics, establishes a

benchmark mirroring network model, and constructs a pre-evaluation system for

configuration changes based on the digital twin technology. When the network

configuration changes, the system automatically generates a new mirroring

network. Compare and analyze the topology status, traffic distribution, and route

convergence efficiency before and after the change, and provide an impact

assessment report to effectively identify potential high-risk configuration errors.

In addition, with the dynamic traffic modeling technology, the system can

simulate routing policies and traffic changes in milliseconds, accurately predict

the evolution trend of key performance indicators such as delay fluctuation and

packet loss rate threshold, providing data support for network optimization

decision-making.

 AI diagnosis: A multi-dimensional fault self-diagnosis model is established based

on the second-level fault feature extraction on the device side, knowledge graph

inference, and time series pattern mining. The system adopts the big model

thinking chain technology to realize intelligent alarm aggregation and status trend

prediction, and supports dynamic fault root cause reasoning and potential risk

identification. The online knowledge injection mechanism enables the system to

perform guided diagnosis on unknown faults and generate closed-loop handling

suggestions, forming a complete intelligent O&M solution.

 Self-healing network: A complete closed-loop fault handling mechanism is built

based on the O&M knowledge database and dynamic orchestration capabilities of

large models, implementing automatic processing in the entire process of

"sensing-diagnosis-decision-making-execution". For non-hardware faults, the
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system automatically implements recovery policies such as redundant path

switchover. For hardware faults, the system generates precise maintenance orders

based on digital twin simulation. In addition, based on the correlation analysis of

network topology status, device health indicators, and traffic patterns, the system

can predict potential faults in advance and implement intelligent DR with

minute-level self-healing.

4.4.2 Tenant-level network slice isolation

MANs needs to carry traditional services and intelligent computing services in a

unified manner and meet differentiated SLA requirements in different service

scenarios. The dual isolation mechanism between logical and physical resources

effectively prevents resource preemption and ensures the deterministic service

capability of key indicators such as bandwidth and latency for training and inference

services. As a new IPv6-based network solution, the tenant-level slice isolation

technology makes full use of SRv6 programmability and IPv6 address space

advantages to provide multiple tenants with network slice services that share physical

resources but are logically isolated. A core mechanism of this technology is as follows:

A source node encapsulates a unique slice identifier according to a tenant requirement,

and nodes along the path implement slice identification by parsing a packet, and

execute a predefined forwarding policy.

Tenant-level network slicing technology has three core advantages: First, slice

identifiers are used to represent fine-grained resources, ensuring that indicators such

as bandwidth and latency between slices do not interfere with each other. Second,

SRv6 network programmability supports flexible service orchestration, meeting the

requirements for fast service rollout. Third, it provides a highly reliable network

slicing solution to achieve optimal resource utilization and accurate service assurance

in a multi-tenant environment.
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4.4.3 End-to-End security assurance

Amulti-level defense-in-depth system is required for MANs in the AI era to cope

with data leakage and horizontal penetration risks in multi-tenant environments. Its

core is to implement E2E tenant data isolation and encrypted transmission, especially

in computing power scheduling and cross-domain communication scenarios to ensure

data confidentiality and integrity. Based on the SRv6 VPN and network slicing

technology, a three-level isolation mechanism of "access device-network slice-VPN"

can be constructed to effectively block security threats by decoupling the physical

layer, protocol layer, and service layer from all dimensions. In addition, security

group policies and cross-domain traffic trustlist management and control are used to

achieve zero cross-penetration of tenant data.

The security architecture uses the dual protection mechanisms of slice isolation

and VPN encryption to upgrade security capabilities from passive defense to active

immunity, achieving the security goal of "no data is sliced, no risks are crossed, and

no plaintext traffic is left". In the future, cutting-edge technologies such as quantum

encryption (including post-quantum cryptography and quantum key distribution) and

trusted execution environment will further enhance the security protection capability

of the network. Convergence of these technologies will promote the evolution of

intelligent computing networks to a zero-trust architecture featuring "active immunity,

dynamic awareness, and full-chain trustworthiness", providing a solid security

foundation for service innovation in the AI era.

4.4.4 Green and low carbon network

As the key infrastructure that supports the development of artificial intelligence

and digital economy, MANs are facing the challenges of high energy consumption

and low efficiency. As computing power requirements grow exponentially and

network bandwidth pressure continues to rise, problems such as high single-bit power

consumption and sharp increase in heat dissipation costs of the existing 100G

platform become increasingly prominent. As a result, the OPEX and carbon emissions
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increase at the same time. In addition, the multi-layer network architecture brings

device redundancy and protocol conversion loss, which further aggravates the energy

efficiency bottleneck. Under the background of the "double carbon" strategy, it is

urgent to use technological innovation to revolutionaryly improve network energy

efficiency and build MANs with high energy efficiency, large bandwidth bearing

capability, and intelligent scheduling features.

The green and low-carbon transformation of MANs focuses on three technical

paths: In terms of ultra-high-speed platform upgrade, 400G/800G networks can

significantly reduce single-bit energy consumption and support long-distance lossless

transmission, meeting the requirements of high-bandwidth scenarios such as large AI

model training. In terms of intelligent energy saving system, AI-based real-time load

prediction and multi-factor decision-making algorithms implement dynamic

optimization and adjustment of device power, heat dissipation policies, and optical

module status. In terms of architecture reconstruction, SRv6 and EVPN is used to

simplify network layers, promote flattened architecture, and use SDN to implement

precise resource scheduling. Through the collaborative innovation of ultra-high-speed

platforms, intelligent control, and simplified architecture, we will build a new

computing network with high energy efficiency and low emissions, providing green

infrastructure support for high-quality digital economy development.
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Chapter V

Typical Deployment
Scenarios
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5.1 Scenario 1: Transmitting massive sample data to

AIDC

Scenario Characteristics: All three stages of large AI model

development—pre-training, post-training, and fine-tuning—require transmitting

massive volumes of sample data to AIDC. During the pre-training phase, data

volumes have reached the PB scale. While the sample data volume per user in the

post-training and fine-tuning phases is relatively smaller (typically at GB/TB levels),

the aggregate data volume surges significantly as the number of users

increases. Hence, MANs must meet the ultra-high-throughput demands of training

data delivery scenarios and possess tenant-level slicing capabilities to ensure secure

isolation between different tenants.

Solution:

Figure 5-1 : Transmitting massive sample data to AIDC solution

MANs require key technical capabilities like tenant-level slicing isolation and

network-level load balancing to support massive sample data delivery scenarios:

 Tenant-level slicing isolation: Isolates training data traffic from regular service

traffic using hierarchical slicing technology, effectively preventing resource

contention between tenants;

 Network-level load balancing: Implements conflict-free balanced scheduling

across all network paths through unified traffic planning, significantly improving

network resource utilization.



52

5.2 Scenario 2: Model training with storage and

compute disaggregated

Scenario characteristics: Industries such as finance and healthcare impose

extremely high security requirements on private sensitive data. When leasing

third-party AIDC for large model training, they demand that private data can not be

stored on third-party AIDC. Therefore, in the remote training scenario, sample data

storage nodes and AIDC are deployed across wide-area networks. Sample data is

pulled on demand for training and immediately discarded after computation,

effectively meeting the data security needs of sensitive-data customers. MANs must

meet the RDMA lossless transmission requirements of this remote training scenario

and possess capabilities such as tenant-level network slicing and data encryption to

ensure sample data is not compromised during transmission.
Solution:

Figure 5-2: model training with storage and compute disaggregated solution

MANs needs to possess key technical capabilities such as tenant-level slice

isolation and RDMA wide-area lossless transmission to support the remote training

scenario:

 Tenant-level slice isolation: Supports isolating remote training traffic from

ordinary service traffic, avoiding traffic throttling during congestion control

affecting other services;

 RDMA wide-area lossless: Through flow-level precise flow control, avoids

packet loss during the sample pulling synchronized with training, ensuring

computational efficiency does not degrade during remote training;

 Elephant flow load balancing: Based on transport layer information, splits traffic,

load balances multiple sub-flows of one elephant flow onto different slice paths,
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achieving high-throughput transmission;

 Data encryption: Supports end-to-end encrypted data transmission, guaranteeing

the security of sample data during transmission.

5.3 Scenario 3: Collaborative model training across

multiple AIDCs

Scenario Characteristics: During collaborative large model training across

multiple geographically dispersed AIDCs, intermediate data generated in each training

iteration (optimizer parameters, gradients, etc.) must be synchronized among all

AIDCs before proceeding to the next iteration. This cycle repeats until training

completion. Parameter-plane data synchronization relies on the RDMA which is

highly sensitive to packet loss, with concurrent data volumes reaching terabytes.

Consequently, MANs must deliver ultra-high throughput and lossless transmission

capabilities, while incorporating high-convergence networking to balance bandwidth

costs with training computational efficiency.

Solution:

Figure 5-3：Collaborative model training across multiple AIDCs solution

MANs solutions must support the following key technologies:

 Network-level load balancing: Achieves conflict-free inter-path flow scheduling

across the entire network through unified traffic planning;

 Lossless RDMA over wide area networks: Prevents packet loss during distributed

training via per-flow precise flow control, ensuring no degradation in

computational efficiency;

 High-convergence networking: Implements efficient convergence of collaborative

training traffic through collective communication algorithms and network

optimization, reducing network infrastructure deployment costs.



54

5.4 Scenario 4: Cloud-Edge collaborative model

training/inference

Scenario Characteristics: The local deployment approach of training-inference

integrated machines in corporate park struggles to meet enterprises’ rapidly growing

demands for model fine-tuning and inference. Thus, cloud-edge collaborative

training/inference between integrated machines and computing resource pools has

emerged as a critical direction for enabling elastic scaling of enterprise computing

resources, thereby supporting large model application deployment. Cloud-edge

collaboration relies on model partitioning, requiring MANs to support inter-layer

parameter plane data synchronization. This necessitates lossless RDMA transmission

capabilities with ultra-high throughput.

Solution:

Figure 5-4：Cloud-Edge collaborative model training/inference solution

MANs solutions must support the following key technologies:

 Network-level Load Balancing: Achieves conflict-free balanced scheduling

across all paths in the entire network through unified network-wide traffic

planning;

 RDMA Wide-Area Lossless Networking: Prevents packet loss during model

training via flow-level precise traffic control, ensuring computational efficiency

remains undiminished throughout collaborative training and inference processes.

5.5 Scenario 5: Inference delivery

Scenario Characteristics: Pre-trained large models are typically at the gigabyte

(GB) scale. During deployment, they need to be distributed from training clusters to
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multiple inference clusters. MANs must provide ultra-high throughput to ensure

transmission efficiency during distribution, alongside robust security mechanisms to

safeguard model integrity. Furthermore, after inference models are deployed to edge

nodes, they must rapidly respond to users’ high-concurrency, real-time inference

requests, necessitating deterministic service capabilities in MANs.

Solution:

Figure 5-5: Inference delivery solution

MANs solutions must support the following key technologies:

 Network-level Load Balancing: Through network-wide traffic orchestration, it

achieves conflict-free balanced scheduling across all paths during inference

model deployment;

 Security Encryption: Combined multi-tiered encryption technologies safeguard

data security during transmission;

 Deterministic Low Latency: Ensuring optimal user experience during real-time

interaction with inference applications.

5.6 Scenario 6:Federated learning

Scenario Characteristics: During the multiple AIDCs’ federated learning

process, each participant trains models locally using private domain data. Model

parameter gradients are exchanged to achieve model parameter aggregation. MANs

must provide stable connectivity for devices participating in federated learning

while safeguarding data transmission security.
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Solution：

Figure 6-6: Federated learning solution

MANs solutions must support the following key technologies:

 Secure encryption: Through multi-level encryption technology combination,

guarantee the security of the data transmission process;

 RDMA Wide-Area Lossless Networking: Prevents packet loss during federated

learning via flow-level precise traffic control, ensuring computational efficiency

remains undiminished throughout federated learning.

5.7 Scenario 7: Multi-agent system / A2A

Scenario characteristics: Multi-Agent System (MAS) implements real-time

interoperability, dynamic task collaboration and secure communication between

agents through A2A (Agent-to-Agent) protocol, imposing explicit and strict

requirements on network: dynamic task delegation between A2A agents demands low

network latency to prevent task chain blocking; A2A needs to handle long-duration

tasks (e.g. in-depth research analysis lasting hours to days), requiring maintenance of

stable persistent connections; permission isolation (e.g. Agent A can only invoke

specific interfaces of Agent B) requires network support for fine-grained access

control.

Solution:
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Figure 5-7: Multi-agent system / A2A solution

MANs solutions must support the following key technologies:

 Low-latency path: Metropolitan Area Network constructs millisecond-level

low-latency guarantee for task delegation among agents;

 Network reliability: Metropolitan Area Network provides stable and reliable

network paths, ensuring long-duration tasks among agents.
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Chapter VI

Conclusions and Future
Perspectives
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This white paper examines the development trends of artificial intelligence and

corresponding service requirements, conducting comprehensive research on

application scenarios, network architectures, key technologies, and deployment

solutions for metropolitan area networks. It actively promotes the evolution of

conventional metropolitan area networks into next-generation computing

service-oriented metropolitan area network, thereby facilitating technological

innovation and practical deployment.

The planning and construction of metropolitan area networks should be driven by

both user demands and advancements in computing-network convergence

technologies. Through the research and analysis presented in this white paper, we seek

to stimulate broader industry participation and discussions. We look forward to

collaborating with partners across the ecosystem to develop next-generation

metropolitan area networks featuring comprehensive coverage, elastic scalability,

lossless wide-area connectivity, ultra-high reliability, and intelligent automation.
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